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Abstract. Resonances or near resonances are ubiquitous among

the excited nonradial pulsation modes of variable stars and they

must play an important role in determining their pulsational

behavior. Here in a first step at nonlinear asteroseismology

we explore some of the consequences of resonances by means

of the amplitude equation formalism.

We show how parity and angular momentum constraints can 1. Introduction
be used to eliminate many of the possible nonlinear resonant

couplings between modes (and multiplets of modes), and how

the amplitude equations can thus be simplified. Even when we

may not be able, nor wish, to make an ab initio computation of

the values of the coupling coefficients, it is still possible to obtain
constraints on the nature of the excited modes if a resonance

between observed frequencies can be identified.

Resonances can cause nonlinear frequency locking of

modes. This means that the observed frequencies appear in e.r-

act resonance even though the linear frequencies are only ap-

proximately in resonance. The nonlinear frequency lock, when

it occurs, it does so over a range of departures from linear reso-

nance, and it is accompanied by constant pulsation amplitudes.
The locked, nonlinear frequencies can differ noticeably from

their nonresonant counterparts which are usually used in seis-

mology. This is particularly true for multiplets of modes split

by rotation; Beyond the regime of the frequency lock, ampli-

tude and frequency modulations can appear in the pulsations.
Far from the resonance condition one recovers the regime of

steady pulsations with nonresonant frequencies for which the
seismological studies, as they are presently carried out, are justi-

fied (provided furthermore, of course, that nonlinear frequency

shifts are negligible).

Success in identifying a resonance in an observed power

spectrum depends on the quality of the data. While keeping this
limitation in mind, we discuss the possible existence of peculiar

resonances in the pulsations of specific variable white dwarfs
and 6 Scuti stars.
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Resonances between pulsation frequencies are known to play an

important role in the dynamics of classical variable stars such as,

for example, Cepheids. (For reviews, see Buchler 1990, 1993.)

They have a profound effect on the shape of both light and radial

velocity curves.

For nonradial pulsators that exhibit a much denser frequency

spectrum--such as variable white dwarfs, 6 Scuti stars, or ,3

Cepheids--resonances are likely to occur as well. They can

certainly play a role in modal selection and resonant coupling,
as has indeed been advocated as the mechanism for saturating

the amplitudes of 6 Scuti stars (Dziembowski 1993). But reso-
nances do have other effects that can affect the resulting Fourier

spectra. Before proceeding, however, we note that resonances

do not exist between all possible modes in a given star. There-

fore identifying resonances among observed modes may lead to
constraints on the identification of these modes.

Resonances couple (nonlinearly) pulsating modes and there-

fore play an important role in determining the amplitudes of pul-

sation. The amplitudes of resonating modes are usually smaller
than would be the case were the modes nonresonantly coupled,

for instance. In the particular case of a multiplet of modes split

by rotation, the resonance between the modes of the muhiplet

can be responsible for a strong asymmetric pattern in amplitude

within a given multiplet (Buchler, Goupil & Serre 1995, here-
after BGS), as is observed in the case of some variable white
dwarfs.

Resonances can also strongly affect mode frequencies and

the spacings between those frequencies. One way this may hap-

pen is by "frequency locking" even when linear eigenfrequen-
cies are not in exact resonance but rather in near-resonance;

that is, when the exact resonant relation _3 kj_j = 0 (kj

positive or negative integers) between frequencies a)j is not

exactly satisfied yet nonlinear effects (resonant coupling) can
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modifythelinearfrequenciesandcausetheobserved frequen-
cies to be locked into exact resonance. As a consequence, a

near-resonance, through frequency locking, causes the observed

modes to be equally spaced in frequency. In the case of gravity
modes (as seen in white dwarfs) this can result in a departure

from the equal period spacing expected from a first order asymp-

totic analysis of those modes (see, e.g., Sect. 10.3.3 of Hansen
and Kawaler 1994). On the other hand, frequency locking within

a rotationally split multiplet of a rapidly rotating star could yield

equally spaced frequency splitting, which is to be contrasted to

the prediction of linear theory where strong departures from

equal splitting are expected.

Frequency locking is maintained as long as the modes are

linearly in near-resonance. This raises the question of how close
to exact resonance must the linear frequencies be for frequency

locking to take place.
It is the purpose of the this paper to address the above issues

in more detail.

In order to investigate resonant mode coupling one obvi-

ously has to go beyond linear effects. Unfortunately, hydrody-

namical computations are not yet possible for nonradial pul-

sators. The only theoretical framework presently available is

the Amplitude Equation (AE) formalism, which has been de-
scribed in a number of reviews (Dziembowski 1993; Buchler

1988, 1990, 1993) and papers (Dziembowski 1982; Buchler &

Goupil 1984, hereafter BG84; Goupil & Buchler 1994, here-
after GB94; van Hoolst 1994). For most well-observed nonra-

dial pulsators such as white dwarfs, c_Scuti stars and r- Cephei
stars, this theory applies rather well because the theoretically de-

rived growth rates of the excited modes are very small compared

to their frequencies. Furthermore, the pulsations are generally

mildly nonlinear in the sense that the nonlinearities arc small

in the pulsations about the stellar equilibrium configuration.
For these two reasons the linear and nonlinear periods are very

close, which by the way is also one of the basic assumptions
that underlie the current efforts in linear asteroseismology.

For details of the derivation of amplitude equations in this

context we refer to GB94 who also give explicit expressions

for the coefficients of the AEs in an Eulerian formulation. (Van

Hoolst 1994 has recently given their Lagrangean equivalent.)

Here we intentionally limit the details of the theory but do in-

troduce the notation necessary for further discussion.

The coefficients of the AEs can be computed ab initio, but

this presents a formidable coding effort which has only been at-
tempted in a very limited way (Klapp et al. 1985, Dziembowski

1982).

It is also possible to extract the values of the coupling coef-

ficients indirectly from numerical hydrodynamic computations

of the nonlinear pulsations. This has been done for RR Lyrae
models in Buchler & Kovtics (1986a, hereafter BK86a) and for

Cepheid models in Kov_ics & Buchler (1989). It is unfortunate

that at the present time numerical hydrodynamics calculations

are not yet feasible for nonradial pulsations in this regard.

Thus in this paper we take a phenomenological approach

and undertake a general exploration of the resonant couplings

that may occur between nonradial modes.

1.1. Handling of resonances with amplitude equations

To first order (in amplitude), the velocity pulsations, for exam-

ple, can be represented by

zL(_',t) = ½_ a,_(I)ei_'_L_(r-) (1)
Or

where a,_ and LL(r-') represent, respectively, the complex am-

plitude and the spatial velocity eigenfunction for the vibrational

mode a. A similar expression is obtained for the luminosity

variations, etc. Higher order corrections (BG84, GB94) are

quadratic, cubic, etc., in the amplitudes {a_(l)} and thus repre-
sent modal interaction terms. (For completeness we give a brief

exposition of higher order terms in Sect. 5). The sum is over all

the dominant modes ct (q.v. GB84). We can equivalently count

a given vibrational mode and its complex conjugate as separate

modes or add a complex conjugate to expressions such as Eq. !.

If q modes interact to determine the dynamics, then the cor-

responding AEs have the general form

_t, = (i,_'1 + nt)al +fl(at,a2," " ,%)
(i,_'2 + _2)a2 + f2(al, a2, , ap) (2)

d__ = (i,,,'q + nq)aq + fq(ai a2,''" aq)
dt '

where ,Jo and _ are, respectively, linear eigenfrequencies and

growth rates and the functions f_ are strictly nonlinear and

depend on which particular resonances are present. The AEs
thus form a set of coupled first-order complex nonlinear ordinary

differential equations, and they govern the temporal behavior of

the amplitudes and phases. In view of the weak nonlinearity of

the stellar pulsations we need only consider the lowest relevant

powers of amplitudes in the functions f_. In the AEs the 2f + 1
components of multiplets (and their complex conjugates) are

counted as individual modes. Here f is the angular momentum

quantum number of the spherical harmonic Ytm(0, _) and 2(+ 1

corresponds to the number of possible values of rn.
For convenience, one usually converts to real amplitude and

phase by setting aa = Ao exp(i(po). The solutions of the AEs
come in various forms. On one hand, the (real) amplitudes Ao

can be constant in time, as so-called _×ed point (FP) solutions.

For example, when the AEs have a FP (A_ constant and _

constant) then

u(_, t) = ½E A_ei_°tU_(r-3 (3)

where _a represents the linear frequency corrected for nonlinear

effects. The pulsation is described to first order by a multi-

periodic Fourier expansion with q dominant peaks in the Fourier
spectrum to which should be added "combination frequencies"

from higher order corrections.
On the other hand, the amplitudes, Ao, and phases, _,o, may

vary on a long time scale. These modulations can further be

of several types; namely, periodic, multi-periodic, or irregular

(chaotic). The phases can, of course, also undergo correspond-

ing modulations. The periodic or multi-periodic modulations
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then give rise to peak splittings in the Fourier spectrum when
the observations span a long enough time interval.

Many mechanisms can cause amplitude variations. It is well

known, for example, that the fixed points of 2:1 resonant AEs

can just be unstable and undergo a Hopf bifurcation leading to

a periodic variation of the amplitudes and phase. Further away

from the Hopf bifurcation these modulations can also become

irregular (see, e.g., Moskalik 1986; BK86a).

Note, for completeness, that on top of this temporal behav-

ior one could also have evolutionary changes generally arising

from, for example, the stellar core's nuclear evolution (as in 8
Scuti stars) or from thermal leakage through the star (as in white

dwarfs). Such secular changes, however, are extremely slow and

we ignore them here.

1.2. Applicability

Even though the AEs are easy to write down in general form, we

caution the reader that a complete description of the pulsations

in terms of these equations is useful from a practical standpoint

only when the number of modes is small, or when it is possible
to consider certain groups of modes in isolation from others.

Thus, for example, BGS have explored the case of a nonradial

g = 1 mode which is rotationally split into three components

by making the assumption that such multiplets can be studied

independently of each other. An extension to g = 2 or higher is

still straightforward in principle but the number (2g + 1) of AEs

increases rapidly with g as do the number of resonant coupling
terms.

Besides the often Iarge number of excited modes the most

important puzzle of nonradial stellar pulsations is the frequently

observed temporal variation of the amplitudes of the excited
modes. The observations are usually not complete enough how-

ever to decide whether such variations are periodic, multi-

periodic, or chaotic, and whether they have a sizeable stochas-

tic component, or even are stochastically driven. Resonances

among excited modes can easily cause amplitude modulations.
In contrast, it turns out to be rather difficult to obtain ampli-

tude modulations with nonresonant AEs. For example, Buchler

& Kovtics (1986b, hereafter BK86b) have shown that in the

case of 0nly two nonresonantly interacting modes the ampli-

tudes are necessarily constant. For a larger number of interacting
modes, modulations do become possible, but stable FPs (with

fewer modes excited) generally coexist with time-dependent so-

lutions, and from evolutionary considerations it appears much

more likely to find the system in one of these FPs. (It would

take an remarkably strong external kick to make the star jump

into such a pulsational state.)

On general grounds we expect the resonant coupling to be

simpler in white dwarfs than in pulsating Main Sequence stars

(6 Scuti and fl Cephei stars). Indeed, for white dwarfs the pulsa-

tion frequencies of the 9-modes (gravity modes) are very well

separated from the p-modes (pressure modes) by factors of 100.
Therefore no simple resonances between 9- and p--modes oc-

cur. On the other hand, for the pulsating MS stars the p and

9 spectra have a considerable overlap and many modes have a

mixed character. TOe situation here is made even more compli-

cated by the trapping of 9-modes in the interior. Such 9-modes

may thus be active in a resonance, yet their frequencies do not

appear in the spectrum of the light curve (e.g., Dziembowski &
Krolikowska 1985).

Confusing statements have appeared in the literature as to

the possibility of chaos in stellar pulsators - such as in _ Scuti
stars, for example- and we wish to address this point briefly. One

needs to distinguish between two types of chaos. Rapid. erratic

amplitude and phase variations, such as those found in R Scuti
(e.g., Buchler, Serre, Kollath & Mattei 1995, and Buchler et

al. 1996), which one might term "fast chaos", require that the

growth rates of the excited modes be of the same order as the

frequencies themselves, and thus this regime is clearly beyond

the range of validity of AEs. On the other hand, for the majority
of nonradial pulsators (6 Scuti, fl Cephei, white dwarfs, etc.) the

growth rates are relatively very small. Chaos, if it occurs in these

stars, must therefore be in the amplitude and phase modulations

as a sort of"siow chaos." A study of such slow chaos is possible

within the amplitude equation framework (e.g., Wersinger et
al, 1980; Buchler & Goupil 1988) because K/w << 1 is both

the condition for slow chaos and for the validity of the AE
formalism.

In Sect. 2 we examine the general phenomenon of frequency

locking and its consequences. Interesting, but technical conse-

quences of frequency locking and its disappearance away from
the resonance region are given in Sect. 3. In Sect. 4 we con-

sider resonances where angular frequencies are related by near-
rational ratios of the form mwa _ nwb or _wo + nwb +pWc _ O,

where m, n and p are (positive or negative) integers. In par-
ticular, we shall set down selection rules that can be used to
eliminate various combinations of/' associated with the res-

onating modes. Sect. 5 is technical and is devoted to proving

some useful properties of the coupling coefficients. In Sect. 6,

the possible existence of resonances in nonradial pulsators is

emphasized with some examples from the literature of variable
white dwarfs and 6 Scuti stars. With these examples, we then
illustrate what kinds of constraints could be obtained were a

resonance to be definitely identified in an observed spectrum.

We conclude with a summary discussion in Sect. 7.

The reader who is not interested in technical details is urged

to skip Sect. 3 and Sect. 5.

2. Frequency locking - a summary

A very general result associated with resonances, discussed

briefly earlier, is the nonlinear phenomenon of frequency lock-

ing, sometimes also called phase locking. Frequency-lock be-
tween one two or more resonant modes can occur no matter

how many additional modes or multiplets may otherwise be

interacting.

The reason for this is that for every resonance of the form
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(wheretheki are positive or negative integers) we can introduce

a phase variable of the form epo = _ kic)_ = 0, and an AE of the

form d_/dt = RHS,_, where the RHS, are expressible in terms

of only the resonant phases _o (and of course the amplitudes

A). For the FPs then d@o/dt = 0 or to the frequency lock

Z ki£'i = 0.

Each resonance can thus give rise to a separate frequency lock.

2. I. Two-mode resonances

We first illustrate frequency locking in the well known case of a

2:1 resonance, 2wa _ w6. Here we consider the situation where

both modes are linearly unstable, and thus when far from the
resonance center neither of them becomes a slave mode. (The

complementary case of a linearly unstable mode a and a linearly
stable mode b was investigated by Klapp et al. 1985, BK86b. In

that situation the amplitude of the linearly stable mode gradually

vanishes, more precisely this mode becomes just one of the slave

modes).

With the introduction of the real amplitudes and phases, the

two complex AEs can be rewritten as four coupled AEs in A,
B, ¢a and ¢b. However, because only the phase combination

@ = ¢b - 20, appears on the right hand sides, these four AEs

can further be reduced to the three AEs (cf. Eqs. ! 8 in Sect. 3)

dA/dt = n_ + Fa(A, B, 47)

dB/dt = _b + Fb(A, B, _;) (4)

d_ /dt = 5w + F¢(A, B, ¢I,).

The functions Fa, Fb and F_ are strictly nonlinear, but they

are periodic in _i, through a cos • and sin <P dependence. The
frequency mismatch or "detuning," which for this resonance is

&z = Wb -- 2wa, appears then in the stow phase.

When the amplitudes A and t3 are constant in time, i.e. for

FPs (dA/dt = dB/dt = 0), the nonlinear frequencies are also
constant with

&a = w + dO_/dt (5)
&b = 2,: + dc)b/dt.

Furthermore, d_ /dt = ddb/dt - 2d¢_/dt=O and thus ,Ic,must

also be constant. It follows that the observable frequencies obey

2_a = _Sb. (6)

In other words, for stable FP solutions (assuming that they exist)
the effect of the resonance is then to cause a nonlinear

synchronization of the two modes. A further consequence

is that the pulsation exhibits a single period of 2_r/&_ (e.g.,

BK86a) so that Eq. (3) reduces to

u(r', t) = Aei='°tUa(r -3 + Bei_ eiZ_JUb(r -') + cc. (7)

We stress that this synchronization occurs because of the

nonlinear mode coupling, and despite the fact that the

linear resonance condition is only approximately satisfied.

Generalizing, one can now easily verify that a resonance of

the type nwa _ rnwb always introduces a phase

= nG - mob (8)

and, for FP point solutions (i.e., with A and B constant and

nonzero), the resonance leads to a frequency lock of the form

nTza = mS;b. (9)

2.2. Three-mode resonances

Three-mode resonances are slightly different. A resonance of

the type m,za _ nwb + pWc, for example, introduces the phase

= me,, - nob - pOc (I0)

and, when the three amplitudes are constant and nonzero, a

frequency lock of the form

rn2,a = n£,_ +p&_. (11)

ensues. The general FP solution, instead of involving three in-

dependent frequencies, can then be expressed in terms of a two-

periodic Fourier expansion with the two basic frequencies 2,b
and S.,_. In lowest order

tt(?', t) = Aei_ ei(J"b+J"_tUa(r-') + Bei_btG(Tv)

+Cei_t G(r-3 + ce.
(12)

Frequency locking can assume yet another form as, for ex-
ample, in the 1:1:1 resonance within a rotationally-split multi-

plet considered by BGS. Here, for _c= 1, it is the phase combi-
nation

= ¢+ + ¢_ - 2¢0 (I 3)

that appears in the AEs. The subscripts refer to the three m val-

ues (- 1, 0, +I) of the modes. (We note that this case is mathe-

matically equivalent to a resonance of the type 2_o _ w+ + ;_ .)
The nonlinear frequency lock, which again occurs when the

amplitudes are constant, therefore leads to the condition

a,o = _(&, +__). (14)

Or, in other words, the intra-mu]tiplet resonance results in a

symmetric splitting of the multiplet, even when the linear

splitting is not symmetric. Note that there is also a nonlinear

shift in the position of the central frequency peak.

For an g = 2 mode, an additional phase • = ¢+2 +0-2 - 200

appears. For FPs, with all of A0, A2_ and Az+ constant and
nonzero, this leads to

ff)o = ½(_+z + 5;_z). (15)

These two peaks are therefore also organized symmetrically
about the center.

Thus, quite generally, whatever the resonance may be, one

always obtains a frequency lock" in the vicinity of a reso-

nance provided a stable resonant FP solution exists.
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We end this section with a technical note. The previous

very general result follows directly from the existence of a cen-
ter manifold (see, e.g., Guckenheimer & Holmes 1983; Coul-

let & Spiegel 1984; BG84). Whenever there are one or more
resonances among the modes {i} of the center manifold--

that is, relations among the linear frequencies of the form

kiwi _ 0, with ki positive or negative integers--then the
resonant terms in the AEs only involve the specific phase com-

binations • = _ k_0,. The various phase AEs can then always

be combined into an AE for dO/dt which depends on the am-

negligible. Here one recovers the regime of pulsations with non-

resonant, nonlocked frequencies, i.e. with those predicted by the
nonresonant AEs which differ from the linear frequencies only

by nonlinear corrections, i.e. terms of order of the amplitudes

squared. Only in this regime are the current seismologi-
cat studies justified as they compare observed fi'eclnencies
with nonresonant ones. (This statement of course further sup-

poses that the mentioned nonlinear frequency shifts are small).
We now turn to a more detailed discussion of the solutions of

the AEs as one moves away from the resonance condition. For

plitudes A, and ¢, only. For FPs, when the amplitudes Ai are thesituationtobeofinteresttheparametersmustbesuchthat(1)
constant, a frequency lock of the form _ ki&i = 0 necessarily
results.

2.3. Condition for frequency locked pulsations

The above results raise a theoretical question, however. The

resonant AEs apply not merely near the resonance center, but
also far from resonance. In contrast, the nonresonant AES hold

only far from the resonance center. How then are the solutions
of the resonant AEs related to those of the nonresonant AEs in

that limit?

Phrased in terms of observable frequencies, in the limit of

infinitely large departure from exact resonance for the linear

eigen-frequencies, one indeed expects to recover a nonresonant
coupling behavior in which the frequencies are no longer locked.

What happens to the frequency lock as the linear eigenfrequen-

cies move away from the resonance and, more specifically, in
what manner, and how far from the resonance center does fre-

quency locking break down?

The question is also of practical interest. First, in view of

the possible constraints it can bring up (see next section), one
should wonder whether, in stellar conditions, frequency locks

can ever occur, and if so, over what range of parameters. A

second point concerns the special case of a multiplet of modes

split by rotation. With the rotation considered a perturbation, the
linear eigenfrequencies of a g = 1 triplet of modes, for example,

are obtained as usual and schematically as:

Cam = W0 + ACarn

n _-- m2(_oo)2_--2 +...)= Cao(l + m_-_ +
(16)

with f2 the rotational frequency and El, _-,2 factors of order unity

depending on the stellar structure and on the nature of the modes.

It is then clear that the eigenfrequencies obey the near-resonant
relation 2Ca0 = Ca++ Ca- + 6Ca, with a resonance frequency mis-

match 6Ca/w0 '-, O(f2/w0) 2. Relations (16) are commonly used
to infer rotation rates from the observed splittings. This can be

dangerous because nonlinear effects can vitiate this kind

of approach. Indeed, when frequency locking occurs and non-
linear effects are large enough they can cause equal splitting far

beyond the small 9_ regime. However, as we will show here, for

large enough f_, the frequency lock is eventually broken. In this

regime one expects modulated amplitude and frequency pulsa-

tions, and as one moves very far from the resonance condition

the amplitude modulations become increasingly shallow and

a stable multimode resonant FP exists at the resonance center,

and (2) the nonresonant AEs (valid 'infinitely' far from reso-

nance) also have a stable muitimode FP (with the same modes).

This implies in particular that we assume that the relevant modes

are linearly unstable (Otherwise, far from the resonance, the res-

onant linearly stabIe modes join the multitude of slave modes,

i.e. their amplitudes become negligibly small, as for example in
the bump Cepheids, cf. BK86a).

A first important result is that, quite generally, a resonant

FP solution with frequency locking can exist in the vicinity of
a resonance (here we summarize the rather technical Sect. 3);

more specifically, for

IcsCal/Ca_<o(_/ca) (I7)

where _ is the growth rate of the mode. This is a rough order-of-

magnitude estimate with factors of 10 possible on either side. As
is obvious, the nature of the solutions of the AEs depend on the

numerical values of the linear and nonlinear coefficients. Note

that rel. (17) holds also for splittings, and whether the cause of

the splitting is rotational or magnetic.

In turn, does the absence of frequency locking imply that

the amplitudes are time-dependent? The AEs are too com-

plicated to study analytically', but numerical solutions provide
some answers as to the nature of the solutions (see Sect. 3).

One can distinguish roughly three regimes when one moves

away from the resonance center i.e when 6Ca/K is increased:
(1) It often happens that near the resonance center (_Ca/n small)

one has a stable FP for which the quoted frequency lock there-

fore exists. There, the frequency may substantially differ from
their nonresonant frequency counterparts which are used in seis-

mological studies.

(2) As 6,.,/_ is increased this FP eventually becomes unstable,
or it disappears. In either case, in this second regime one wit-
nesses a bifurcation to another solution which we find to be

of an oscillatory nature in the numerical examples considered,

thus giving rise to amplitude modulated pulsations. However, as

&.,In gets large the amplitude of this modulation decreases and

eventually evanesces as 1/6Ca. Concomitantly the period of the
modulation decreases as 2rr/6Ca. The satellite-peaks (due to the

amplitude modulation) thus gradually move and their amplitude
vanishes.

(3) Finally, one thus approaches the third regime, viz. a 'clean'

steady spectrum in which the frequencies are given by their

(unlocked) nonresonant values. For further details we refer the



164 J.R.BuchleretaI.:Ontheroleofresonancesinnonradialpulsators

j_.'P

reader to Sect. 3, which also shows a few typical Fourier spectra

that one may expect.
To summarize, near a resonance one has a frequency locked

spectrum, whereas further away from the resonance one obtains

peaks at the {S:_} (which are no longer locked). These peaks may
be sharp, or they may be broadenend because of amplitude and

frequency modulation.
As an example, consider the effects of rotation. The 6 Scuti

stars, for instance, typically have large rotational velocities v ,-.,
150-200 km/s and stellar radii about twice the solar radius.

This leads to a large and asymmetric rotational splitting. This

asymmetry thus gives values of the off-resonance parameter
6_/_0 '_ 10 -3 -- 10 -2 in the range of observed frequencies. The

growth rates for these stars are small, _/w ,---,10 -7 up to 10 -4

for the most unstable modes in the observed frequency range

(Dziembowski 1993). This gives a range of 6a:/n of 10 - 105

for 6 Scuti stars.

On the other hand, variable white dwarfs are believed to be

slow rotators and 6.z/wo .,, 10 -s - 10 -6. Theoretical computa-

tions of growth rates for DAV stars yield n/w ,-, 10-l0 _ 10 -5

(Dolez & Vauclair 1981 ; Lee & Bradley 1993; Bradley &Winget
1994). Here the range ofr_,/_ is 10 -3 - 10 .4.

Give or take an order of magnitude, the condition for a fre-

quency lock (Eq. 17) is satisfied and it can occur for the most
unstable modes and for modes that predominantly sample the

regions of slower rotation. Since the approximate condition for

frequency locking depends on linear growth rates which can

vary strongly from one part of the power spectrum to another,

frequency locking may well occur only for different subsets of

modes in a particular star.
Although growth rates remain very uncertain, the above or-

ders of magnitude indicate that one can expect frequency lock-

ing in variable white dwarfs and slowly rotating 6 Scuti stars,
whereas it is less likely to occur in rapidly rotating 6 Scuti stars.

3. The extent of frequency locking - theoretical

considerations

The main results of this section were already summarized in

Sect. 2. A reader not interested in theoretical fine-points of fre-

quency locking may therefore skip this section without preju-
dice. Here we examine what happens to the frequency locked

solutions of the AEs as one moves away from the resonance

center, and we show that these fixed points must eventually dis-

appear, giving rise to amplitude modulations.

3.1. 2:1 resonance

We first consider the case of the 2:1 resonance, to be specific.

The appropriate resonant AEs are given in Eq. (18)

= -R 3 -R "dA n_A - qa_A - %bAB" + R_ABcos(_ - 6_) (18a)
dt
dB

_bB -R 2- - q_bA B - O_B 3 + RbA2Cos(_ + 6b) (18b)
dt

d#i' 6w- -I 2 -I 2 +_a ._IbB2_R = (qabA -- q[bB2)+ 2(qa,A
dt

A 2

+Rb sin((I, + 6b)-_ -- 2R_ sin(_ - 6o)A (18c)

where the superscripts R and I refer to the real and imaginary

parts, respectively, and where rk = Rkexp(irk), for k=a,b.

Consider the third equation (18c). Since the last two terms

are bounded (_in I < 1, A and B finite by virtue of Eqs. (18a,b)
A _, O(x/'_/q) _ O(n/R), one notes that as 6_' gets large

there can no longer be a DM FP solution after some critical

value 6_b_f. For the resonant terms to play a role the quadratic
and cubic terms must contribute to the same order, hence we

have n _ qA z _ RA. It is therefore easy to see that one has

to have 6_,a)bif/o.] _- O(I¢/W). This is of course an important

practical result. However, we need to stress that this is an order

of magnitude result since we have assumed here that the real

and imaginary parts of the _7and r are of the same order.
We wish to add a technical comment here. Prima facie, the

conclusions of the previous paragraph appear at odds with those
of Buchler & Kov_ics (1986a) who, in the context of the bump

Cepheid resonance, found the DM FP solution to exist for all
6w --, -oc, with B _ 0. The reason is that different assump-

tions were made. In Buchler & Kov_ics it was assumed that

nb< 0 so that in the NR limit only a SM FP exists. Far from
the resonance mode b becomes just another slave mode. Here

both t_ > 0, and both amplitudes stay of the same order as 6_
is increased.

When we are far from resonance then the nonresonant (NR)

AEs should apply. For the case of two modes they are given by

dA = n_A - (%_A" + qybB2)A (19a)
dt

dB = t%B - q_b__ ( n A 2 + q_B2)B (19b)
dt

Strictly speaking the standard cubic coefficients Ojk in

Eqs. (18) and qjk in (19) differ by terms which are O(I/rw)

(BK86a, Eqs. 12), and thus vanish in the limit of large &J. The

question again arises as to how the solutions of the resonant and
nonresonant AEs compare in the limit of large 6,,,,).

The resonant AEs cannot be solved analytically. For the

purpose of illustration we consider a numerical example. We

stress that the results we obtain depend on the values of the

coefficients, both quantitatively, but also qualitatively. Thus for

example the nature of the bifurcations can be affected.

In order to put ourselves into the situation where a double-
mode FP exists in the nonresonant limit ( i.e. A and B different

from zero) we have to assume that both _ and _b are positive,
.n qR R Rand that the discriminant D = '_aa bb -- qabqba > 0 (BK 86b).

(The case where the a mode is linearly stable and the b mode is
unstable has been considered in BK86a, and the reverse case in

Moskalik & Buchler 1990).

In this numerical example we choose the parameters values

(_a : 1.0, nb = 2.0, _aRa= 1.0, %b-n= 0.5, _bn,_= 0.5, (t_b = 4.0,

R,_ = 15.0, Rb = 3.0, 6a = 6b = 0, and all _[._ = 0. Note that

with this choice of 6 phases all _ = q_). For convenience and
without loss of generality we have effectively rescaled the time

in the AES by setting n_ = 1.
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lation frequency, on the other hand, becomes very large and ap-

proaches 6_. As 6_is decreased the amplitude modulations first

reach a plateau at 6_ .-_ 15.5, and then in a very short interval

their period gets large and they become very distorted. We have

not found any oscillatory solutions below 6,: .-_ ! 5.495. (How-
ever, they can be hard to find and a more thorough search might

uncover them). Note that in the region 15.495 _<6_, _< 18.25 the

oscillatory solution coexists with the stable phase-locked FP.

This coexistence of two possible types of pulsational states

also raises the question of how the star selects its pulsational

state. This clearly depends on its past history, and on fluctuations

that are present and can make the star jump from one branch to
another.

In this example we have illustrated the correspondence be-
tween the solutions of the resonant and the NR AEs. The two

AEs agree in the limit 6w ---, oc where they should, but, short

of the limit, the solution of the resonant AEs undergoes ex-

tremely rapid oscillations with vanishing amplitude. Such small
differences are expected in the reduction to normal forms which

extract the essence of the pulsations and discard finer details.

Fig. 1.2:1 Resonance: Amplitudes and phase as a function of the
resonance detuning parameter 6o.:in units of n,, ; solid line: stable and
dashed: unstable frequency locked solution; dotted line: nonresonant
FP.

The FPs of the NR AEs and their stability can easily be found

( cf. Buchler& Kov:ics 1986). There are 2 unstable SM FPs with

respective amplitudes, A = 1.0, B = 0.0 and B = 0.7071, A =

0.0. Further they have a stable DM FP with amplitudes A =
0.8944 and B = 0.6325.

In Fig. I we present a bifurcation diagram for the FPs of

the resonant AEs Eqs. 18. Because of our choice of parameters

the bifurcation diagram is symmetric around 6w = 0. From

the top down we show the amplitudes A and B and the phase
,_,. The solid lines denote the stable FPs, and the broken lines

correspond to other unstable FPs. One observes that a stable

FP point exists only for a range 16_[ < &Obi$ _ 18.24. In the
domain 12.64 < 6w < 18.24 four FPs are seen to coexist, but 3

of them are unstable. One of the unstable branches (long dashes)
exists for all &o. Far from the resonance this unstable solution

approaches the unstable single-mode NR FP A = 1, B = 0.
For 6_ _ 21.16 the A amplitude of one of the unstable FPs

(short dashes) vanishes, and interestingly at this point the system
bifurcates to the unstable NR FP A = 0, B = 0.707.

In the region 6to > 6_bi f where no stable FPs exist, a nu-
merical integration of the AEs leads to an oscillatory solution

(limit cycle). In the star this corresponds then to periodically

modulated pulsations.

A sample for several values of 6_ is shown in Fig. 2. In these

examples the A amplitude is greater than B. The oscillations are
seen to occur about the double-mode FP of the NR AEs, viz.

A = 0.8944, B = 0.6325 (shown as thin horizontal lines). For

large 6a; the the amplitude modulations become sinusoidal and

their amplitudes are evanescent, scaling with 1/6_. The modu-

3.2. Rotationally-split multiplet - 1:1:1 resonance

We now turn to the 1:1:1 resonance which was discussed in

connection with a rotationally induced splitting in an t = 1

multiplet (BGS). Because of the cancellation of many of the
resonant terms (due to angular momentum constraints) only the

combination phase ,:I,ofEq. 13 appears. Rather than being those

of two 1:I resonances, mathematically the AEs are the same
as one would obtain for a three-mode resonance of the type

2_ w2 + _3. This is the reason why only the parameter 6,,' =
w+ + _o_ - 2-,0 rather than the separate frequency differences

-'+ - w0 and _o - to_ appear.

For a triplet ( = I of modes split by rotation of respective fre-

quencies w_, _0, w+, the corresponding amplitudes A_, A+, .40

and phases _b_, 00, _5+then obey the resonant AEs (BGS):

A_ = K_A_ + R_A2oA+ cos(_'-6_)

- A-(qljA2__ + ql2A_ + ql3A2+) (20a)

Ao = KoAo + RoAoA+A- cos('I'+60)

- Ao(q21A 2- + q22A20 + q23A 2) (20b)

A+ = _+A+ + R+AoA_ cos(_-6+)

_ A 2 _ 2A+(q31 _ + q32A?_+ q33A+) (20c)

d_ = &o - 2RoA_A+ sin('_+6o)

+Ao (R__-----_-+_sin(_-6_) + R÷-_ sin(c/,-6+)) (206)

The quantity &c = to+ + ,:_ - 2w0 measures the departure from

exact resonance which, here, is also the departure from equal

frequency splitting. For simplicity, we have set equal to zero the

imaginary parts of the NR cubic nonlinear coefficients in the

appropriate resonant AEs.
The FP solution of (20), i.e. with A,-,, = 0, m = -, 0, +; '1' =

0 with all 3 amplitudes constant and nonzero, when it exists,
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Fig. 2. 2: I Resonance: Amplitude modulations, as a function of the resonance detuning parameter _,_'in units of_o; the large and small amplitudes
correspond to modes a and b, resp.

corresponds to a frequency-locked triplet. In addition to such a

triple mode (TM) there can also be single mode (SM) and double
mode (DM) FPs. Finally we recall that the resonant AEs can

also have time-dependent solutions corresponding to amplitude

modulated pulsations (BGS).

In this section we explore what happens to a TM (frequency

locked) FP as 16,.'/Ko[ increases. This is of interest in a given
star because of a variation of the growth rates among the excited

multiplets, or, when we consider a collection of stars, because
of the variety of rotation rates.

As far as the corresponding NR AEs are concerned, there is
no need to write them down, because they are simply obtained

by setting the r,,,'s equal to zero in Eqs. 20a,b and c. It is easy
to show that the q and q are identical for this type of resonance

(this can readily be shown following Buchler & KovScs 1986a).

Depending on the values of the parameters, the NR FPs in gen-

eral can also come as SM, DM, TIM, and may exist or not, be

stable or unstable, depending on the coefficients. It is important
to note the absence of the fourth equation for the phase, i.e.

one no longer has an equation 4_ = 0 as in the resonant case.

This has as an important consequence that the NR triplet is

necessarib" unlocked.

As in the previous section one can show that the frequency
locked FP solutions cannot exist when &,,'/K0 is sufficiently

large. What happens to these frequency locked solutions away
from the resonance center?

It should be obvious that a general parameter study, neither

analytical nor numerical, is not possible and that we have to

resort to numerical methods to provide illustrations of possible
behavior.

First example

In a first such illustrative example we set the phases _,,_equal

to zero for simplicity. Further, the coefficients in the AEs are
chosen so that a stable resonant TM exists at _ = 0, on the one

hand, and so that the NR AES have a stable TM as well.

Our parameter values are: qtl = 0.326, ql2 = 0.2062, q13 =

0.19, q2t = 0.2122, q22 = 0.3425, q23 = 0.2139, q31 = 0.2351,

q32 = 0.2132, q33 = 0.3194, r_ = 0.51, r0 = 0.018, r+ = 0.6.
For the growth rates: K_ = (1 +6. × 10 -3) and _+ = (l - 5. ×

10-2). We have again rescaled the time in the AEs (Eqs. 20),

by setting K0 = 1.
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Fig. 3. Amplitudes and phase (/, of a resonant triplet ( = 1 as the
resonance detuning parameter 6_'/K0 is increased; solid line: stabIe,
dashed: unstable solution; Dotted lines: amplitudes of the NR triplet
FP.

In this simplified case, it can easily be checked that the res-
onant TM FP satisfies the symmetry relation • --, -q_, ,6_, --,

-_,.,, so that we can limit ourselves to positive &,J.

With the chosen parameter values, one has a stable TM

(frequency lock) fight at the resonance center (b,_, = 0) with
A_ = 1.524, A0 = 0.651, A+ = 1.367, • = 0.00.

On the other hand, the NR AEs, that apply for large &_'/,_o,

have the following solutions. A TM A_ = 1.343, A0 = 1.152,
A÷ = 0.873. (Note the different asymmetries in the amplitudes

of the resonant TM and NR TM FPs). The question arises how

the system evolves from the resonant to the NR TM as _/K0
is increased.

Fig. 3 shows the results. The resonant TM FP remains stable
(solid lines) as long as &o/n0 _< 1.367 above which it becomes

unstable (dashed lines). For comparison, the amplitudes of the
NR TM is indicated as horizontal, dotted lines. For large &z/K0

the story is similar to the one described for the 2:1 resonance

in the previous section, namely the amplitudes oscillate around
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theNRTMvalueswithaperiod_ 2n/6_'.Themagnitudes
of theamplitudemodulationsdecreaserapidlywithI6_/_:o].
Ultimately,forlarge6_/Ko, the magnitudes of the modulation
are so small that the star would be seen in practice to pulsate

with constant amplitudes with the latter given by the NR AEs.

What happens in the vicinity of the transition 6_/_o

;_ 1.367 does not seem generic, and depends on the chosen pa-

rameter values. In this example one obtains first a Hopf bifur-
cation with oscillations about the now unstable resonant TM,

but further away the oscillations occur about the NR TM, as

just mentioned. The reason for this smooth transition from the

constant amplitude, frequency locked pulsations to amplitude

and frequency modulated pulsations seems to be that the reso-
nant TM FP amplitudes nearly coincide with the NR TM ones at

]6w/_0] _ 1.6 just after the onset of instability of the resonant
TM solution.

The transition from constant amplitude and frequency

locked pulsations to modulated pulsations can be confirmed

with a simple system of 3 coupled pulsators i.e.

5:+ '_2_x = 2__,_ + 8R_y[tz -- 8qll_x2

--4ql2(y_lx + y2_) _ 4ql3(ZkX + z2:/") (21a)

_)+ _'o2y = 2Koy + 4Roy(,_'z + x_,) - 4q21Q)x 2 + y2x)

-2q22YY 2 - 4q23(_tz 2 + y2z) (21b)

5+ _+2z = 2_+_, + 8R+y[lx - 4q31(x.fz + x2z)

-4q32(Y_/z + y2_,) _ 8q332z 2 (21c)

which have been chosen so that the amplitude equation for-

malism applied to the system 21 yields the AEs of Eq. 20.

To mimic for instance a rotationally induced splitting, the
side frequencies are chosen as: w± = _,0(l + 0.5 6v/_-/_o +

0.56,Z/wo) where 6,Z/_o _x (f//w) 2. The same values as above
are taken for the nonlinear coefficients q and r. The time in (2 l)
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Fig. 4. top from left to right: Temporal behavior of the component
z(t) (Eq.21c) for 6_/r_o = 0.5,4,50 with _o/wo = 10-2. bottom:

Corresponding Fourier amplitude spectra, see text.

As far as observations are concerned, with typically

6_,/a;0 _ (Q/_o0) 2 '_ l0 -6, f2 the rotational frequency, and a

basic pulsation P0 = 2rr/_0 "-- 200s, the period of modulation
for a variable white dwarf is of the order Pmod "_ 106P0 "" 6- 7

years. For a delta Scuti star, with typically &c/,:o "_ 10 -'1 and
P0 "_ 90 ran, Pmod _ 104P0 '_ l - 2 years. Therefore, with

the lengths of current continuous observation runs, if the the
star were in the intermediate regime, only short phases of the

modulation would be captured and the amplitude would barely

vary over a same run. Of course, one would observe a pattern

has been scaled with -_0 = I. For our numerical experiments, in amplitude which would vary from one run to depending at

two values of n0/"_0 are considered below, viz. 10 -2 and 10-3, which phase of the modulation they are recorded.

Fig. 4a shows the behavior of the component z with time Second example

for 6_/_o = 0.5, 4.0 and 50.0. For better visualization we have

taken _:o/wo = 1.5 × 10-2 on the top. Transients have been
removed and the time origin is arbitrary. At &Z/_o = 0.5, z

pulsates with a frequency S;+ with a constant (resonant) ampli-

tude A+. At 6..z/e_o = 50, z pulsates with an almost constant NR
amplitude. At _Sw/_0 = 4, the pulsation is amplitude modulated

with a modulation period of 27r/6,z.

The bottom figures show the Fourier amplitude spectra of

the signal x + y + z built over a time interval of 240 basic periods

P0 = 27r/_0 with 6,_/_o = 0.5. Here no/w0 = 10-3. the

A Fourier spectrum of this signal (Fig. 4b) shows how the q_

triplet goes from a frequency-locked to a frequency-unlocked q_3
pattern when the ratio of the departure from exact resonance (i.e. q22

from equal splitting) to the growth rate increases, everything

else kept constant. Note that at 6W/_o = 4 in the intermediate

regime, the time interval of the signal in Fig. 4 corresponds to

about 1 period of modulation. It can be easily checked that for a

longer time interval i.e. covering several periods of modulation,

additional side frequencies appear in the Fourier spectrum.

Turning to the full case, that is with complex nonlinear co-

efficients entering the AEs (BGS), leads to similar conclusions.

The set of possible types of behavior for the full system, how-
ever, can be more complex. The symmetry @ --, -_, 6,z

-6_ no longer exist and the system can behave quite differ-

ently for _5,; and -6_'. In addition, several types of solution can
coexist.

Fig. 5 shows the evolution of the amplitudes of the resonant
TM solution as one moves away from the exact resonance for

set of parameters
= (0.326 - i 1.413); q_2 -- (0.2062 - i 1.394);

= (0.19 - i 3.368); q2_ = (0.2122 - i 1.351);

= (0.3425 - i 2.521); q23 = (0.2139 - i 1.412);

q3_ = (0.2351 - i 3.26); qs2 = (0.2132 - i 1.419);

q33 = (0.3194 - i 1.451);

r_ = (-0.018 - i 0.51) = 0.5103exp(1.5355 i);
ro = (0.024 - i 1.05) = 1.0503exp(- 1.5479 i);

r÷ = (-0.021 - i 0.6) = 0.6004exp(1.5358 i).
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Fig. 5. Amplitudes and phase of a resonant triplet g = 1 as the ratio
16,_'/'_oI increases - example 2; (solid line: stable and dashed Iines:
unstable triplet); dotted line: amplitudes of the constant amplitude,
nonresonant triplet which exists and is stable far away from the reso-
nance.

In the resonance center (6_ = 0) the resonant AEs have a

TM (frequency locked) FP. Here the solutions and the stability

diagram are no longer symmetric about the resonance center. As

in the previous two examples the frequency locked FP becomes

unstable for a sufficiently large deviation from resonance, i.e.

for _'/_0 < -9.033 and 6_'/_o > 2.53, respectively, as Fig. 5
shows. For these numerical coefficients the system bifurcates

abruptly from the frequency locked FP to an amplitude mod-
ulated pulsation. The amplitude modulations occur about the

NRT FP solution, at first with large excursions which later scale

as l/_w and whose period scales also as 1/6,_. However, as

for the 2:1 resonance example above, there is hysteresis, i.e. a

narrow regime of 5,J/_0 in which the frequency locked and the

amplitude modulated solutions coexist.

4. Resonant multiplets

We assume now that two excited multiplets can interact res-

onantly, but that they are decoupled from other possible ex-

cited multiplets. In the following we label the two interacting
multiplets a = {am, m = -ga,'", ga} and b -- {bin, m =

-eb,... ,tb}-

Among all possible two-mode resonances, three of the types

we consider below are especially important because they can

affect the linear stability of a pulsation. These are: integer

resonances (Sect• 3.1), direct resonances (Sect. 3.2), and half-

integer resonances (Sect. 3.3).

4.1. Integer resonances: na:a _ _b

For didactic purposes we first consider the simplest integer res-

onance; that is, the 2:1 resonance. For simplicity of notation we

will temporarily use the symbols a and b to stand generically

for any component of the associated multiplet.
** 2:1 resonance - 2_va _ _b

The appropriate AEs are easily seen to be (e.g., Dziem-
bowski & Kov_ics 1984, BK86a)

d = cr_a- q_aa*a - q_bbb*a + rlba* (22)
b = crbb - qbaaa*b -- qbbbb*b + r2a 2

where an asterisk denotes complex conjugate. The four cubic

qa;3 coupling terms are the important amplitude saturation terms
that always arise, whether there is a resonance or not and whose

expressions are given in BG84 and GB94. In all our applications

of AEs to radial pulsators we have found that the real parts of the

q,_,_ coefficients are always positive (The physical reasons are
addressed in Buchler 1993). In some of the following discussion

we shall assume, for specificity, that this also holds true for

nonradial pulsators.
The expressions for the resonant coupling coefficients r_

and r2 are given by the integrals over space and solid angle

rl _xr_ (x (alN2[a*b) (23)
f drpr z f dr2 _(r)Y_o N2 _(r)_b(r)Y_* Yeb.

where Y_ is the usual spherical harmonic and N2 is an operator
acting on c (the r-dependent part of the eigenfunctions) which

comes from the second order Taylor expansion of the hydrody-

namical stellar equations (BG84; GB94, and see Sect. 5). Be-
cause of the assumed slow rotation and accompanying spherical

symmetry of the equilibrium stellar model, the stellar structure
operators _ (the linear pulsation operator), N2, N3, ..., have

even parity and azimuthal symmetry. The angular integrals thus

restrict the types of couplings that are allowed (Dziembowski
1984, GB94). Therefore the angular part of (23) simplifies to

* f Y_oY_oYt_drl (x r2 (x ft. (24)

Parity considerations (see Sect. 5) show that the coupling terms
rl and r2 vanish identically

(a) when gb is odd and Vg,_, or

(b) when g,_ = 0 and gb 4 0.
Of course, additional constraints on the ma and mb values arise

from angular momentum (L_) constraints. Here, mb -- 2too
must be satisfied.

It is of interest to note the consequences of the respective

linear stability or instability of the two modes. If mode a is lin-

early unstable (n,_ > 0) and a _' 0, then mode b will necessarily
be nonzero, even when it is linearly stable. (This is the situation

that occurs in the bump Cepheids, BK86.) In other words, mode

a always entrains mode b.
When mode b is unstable with B _' 0, then A = 0 is always

a solution. One can easily show that when this FP solution is

unstable then a solution with A :/0 and B _' 0 exists. In that
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Table la. Resonance 2_a _ O.)b

g,_ fb allowed allowed (rna ,rab)

0 I no

0 2 no

I 0 yes

2 0 yes
1 i no

2 ! no

! 2 yes

2 2 yes

(o,o)
(o,o)

(0,0); (+l, +2)

(0,0); (-4-1, +2)

Table lb. Resonance 3_oa _ a_b

ga gb allowed allowed (m_,mb)

0 l no

0 2 no

1 0 no

2 0 yes

1 I yes

2 1 no

1 2 no

2 2 yes

(o,o)
(o,o)

(0,0)

case one says that mode b parametrically excites mode a (cf.

below under i:2 resonance).

In Table 1a we have summarized the situation for the com-

binations of the lowest ga and gb values that are of practical

interest.

In the realm of low g nonradial modes condition (a) shows

that the higher frequency mode thus needs to be an fb = 2

(even) mode, but that the lower frequency one could be fa = 1

or gb = 2.

Condition (b) shows that a radial mode cannot excite

a nonradiaI mode through this type of resonance unless

the radial mode is the high frequency partner in the resonance.

Thus, for variable white dwarfs for instance, 9-modes might be

excited this way, but never p-modes.

** n:l resonance - nasa _ _b, n > I

We now go on to the general case

_t = ...+rlba *n-1
(25)

b = " " " + r2 an.

where, here and from now on, we omit the usual linear and cubic

saturation terms.

The angular integrals show that the "direct" coupling terms

(due to Nn) vanish when

(a) nga + gb is odd,

(b) ga = 0 and gb 5t O.

For n > 2, there are also "indirect" contributions to rl and

r2. For example, in the 3:1 case where the direct contribution is

(a[N3[f13'6), the indirect contributions all contain terms of the

general form

y'_JalN213k) _ (kiN217/5) (26)
k

where the denominators Dk represent sums and differences of

linear frequencies (e.g. BG84, GB94, BGS). Typically these in-

direct terms are of the same size as the direct term. For n = 3

one can still obtain relatively simple explicit expressions for

the cubic resonant coefficients (as for the 1:1 direct resonance,

BGS). For higher order (n > 3) resonances, however, the indi-

rect terms are quite complicated.

But, fortunately, we can take advantage of a general result,

established in Sect. 5.

_Vhen the direct coupling term vanishes because of par-

it)" and ang311ar momentum (L_) considerations then each

of the possible indirect coupling terms also vanishes, and

conversely.

As a consequence, whatever the resonance is it is sufficient

to study the simple direct term to determine whether a

specific resonant term should appear in the AEs or not.

This enables us to obtain the allowed n:l resonant couplings

as listed in Table I b for the example of a 3:1 resonance and for

couplings involving 1 = 0 to I = 2 modes.

The above constraints on { values given in Tables la and

lb show, for example, that the Blazhko effect in RR Lyrae stars

cannot be explained as the coupling of a radial mode with

a nonradial p-mode of higher frequency through a 2:1 or 3:1

resonance nor, for that matter, through a n:l (n > !) resonance

in general.

4.2. Direct or I:1 resonance: _a "_ a3b

A special situation arises for a direct 1: I resonance which, like

the 3:1 resonance, also contributes cubic terms.

Denoting the amplitudes again generically by a and b we

obtain the AEs

d = ...+rlb2a*+slbaa*+tla2b*+ulbbb *
(27)

b .... + r2a2b * + s2abb* + t2b2a * + u2aaa*

Here there are four possible resonant terms in each AE. As we

have just seen, on the basis of the theorem of Sect. 5, we only

need to consider the direct terms to determine which of these res-

onant terms survive parity and angular momentum constraints.

For these direct terms not to vanish, the constraints on I and rn

are the same as those given by the product of the four appropri-

ate spherical harmonics. Thus the conditions for the existence

of rt and r_ can be obtained from

f yt y_ ytby_d , (28)

This implies that r_ and r_ are different from zero independently

of the values of f,_ and Q.

Similarly,

v.v y y. _,r_ (29)

implies that sl, tl, and u2 vanish when Q + Q is odd, or when

to = 0, VQ. Finally, the integral

f y_ye,ytby_bdf_ (30)
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Table 2. Direct Resonance wa _b

ga _b rl,r2 st, tl, u2 Ul, 82, t2

0 1 yes no no
0 2 yes no yes
1 0 yes no no
1 1 yes yes yes
1 2 yes no no
2 0 yes yes no
2 1 yes no no
2 2 yes yes yes

Table 3. Resonance (2n + l)_a -_ 2a;b, rt _> 0 (e.g. 3_a _ 2Wb,
5_'a _ 2_'b)

g,, gb allowed

0 I yes
0 2 yes
1 0 no
1 I no
I 2 no

2 0 yes
2 1 yes
2 2 yes
The 2:(2r_1) case is obtained by inverting the roles of a and b

yields the conditions that u_, s2, and t2 vanish when either ta +_Cb
is odd, or when gb = 0, Vfa.

The m-constraint is the same for all coefficients; i.e., ma =

77/b

In Table 2 we examine the combinations of low _ 1 :1 mul-

tiplets of potential interest in nonradial stellar pulsators.

If two multiplets are of the same type and one is a t = !
and the other f = 2, then Table 2 shows that all the s, t and u

vanish and there remains only one type of resonant term. This
same simplification occurs when an f = 1 p- or g-mode is in
direct resonance with a radial mode.

4.3. Half-integer resonances: (2n+ l)_a _ 2_b

One notes that this simplest 1:2 (n = 0) case is essentially the
same as a 2:1 resonance provided that we invert the roles of a

and b. The coupling terms thus vanish when (a) £,_ is odd and

Vgb, or Co) when fb = 0 and g,, _ 0.

The higher frequency mode (a) must therefore have even

g,, to be able to parametrically excite the linearly stable lower
frequency mode b (which can have any gb value). Generally, a

radial mode could thus excite any resonant g-mode, even when

the latter is linearly stable. This situation is very similar to the

three-mode resonance _a _ Wb + _Occonsidered by Dziem-

bowski (1982).

The relevant terms in the AEs are

= .., + rlb2o *2n
b .... +r:a2n+lb *. (31)

The direct contribution to r_ and r 2 is easily seen to vanish when

ga is odd. This resonance can couple only central modes of the

multiplets (ma = mb = 0).

Eqs. 24 show that depending on the linear stability and the
values of the nonlinear coupling coefficients three types of so-

lutions may exist.

When mode a is linearly unstable (_o > 0), but mode b is

linearly stable, and if furthermore the FP solution (A :_ 0. B =
0) would be stable in the absence of the resonance (i.e., if Kb +

R
qbaA- < 0), then mode b gets excited para'netrically when (cf.
Moskalik & Buchler 1990) the Floquet exp3nent

nb- qb_A" + Ir212A 2(2_+1)- (6_- q_A')- (32)

is positive. The superscripts R and I refer to real and imaginary

parts, respectively, of the saturation coefficients. If, however,

mode b is also linearly unstable, then of course a double-mode
solution occurs.

On the other hand, when mode b is linearly unstable, but

mode a is linearly stable, one easily sees from Eq. 31 that mode
b cannot excite mode a.

In Table 3 we summarize the situation for the (2_ + 1):2,

n > 0, resonance. One notes that a radial a mode can couple to
and parametrically excite a higher frequency gb = I or (b = 2

mode, in contrast to the n: 1 resonance.

4.4. Other potentially important resonance, 4:3 4._o _ 3_:b

The AEs in this case contain the resonant terms of the form

?t = ... + rlb3a .3

.... + r2a4b.Z. (33)

Angular momentum constraints make the direct contribution

to the r coefficients vanish only when mode b has an odd L

In addition, the coupling is possible only between modes with

m = 0. Parametric entrainment of one of the modes by the other

is not possible here because this resonance does not affect the
linear stability of either single mode FP. It is only when both

modes are excited that the resonance term is allowed to play a
role.

4.5. Three-multiplet couplings

AEs can also be useful in the case of three-mode or multiplet

couplings. Dziembowski (1982), for example, considered the

coupling of three modes through a resonance of the type ,_,_

wb +w_, which is well known in plasma physics under the name
of resonant wave interaction. In later work Dziembowski &

Krolikowska (1985) suggested that it is this type of resonance

that limits the amplitudes of,5 Scuti type stars to their relatively
small observed values.

Also we have already noted that the situation ofa rotationally

split multiplet is mathematically equivalent to a resonance of the

type 2Wa _ W'b+ a;c.
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5. Properties of the coupling coefficients

This section is very technical and can be skipped in a first read-

ing. We prove here a very useful property of the nonlinear
coupling coefficients. We assume that the equilibrium model

is spherically symmetric (slow rotation, no magnetic fields). In
zeroth order in the rotation rate _2 the linear eigenvectors are

then represented by spherical harmonics Y_m which have parity
(_)e; i.e., they obey HY_,,, = (-)_Yem, and L_Y_,,_ = mYem

(e.g., Blatt & Weisskopf 1952). Because of the spherical sym-

metry the nonlinear structure operators have positive parity as
well as m = 0.

To briefly introduce what follows, we first write down the

pulsation equations in a compact form using the convenient
Dirac notion where z represents, for example, the density or

other stellar variable in an Eulerian representation (as in BG84

or GB94):

0lz----_)= _ Iz) + N2[lz)] + N3[{z)] +... (34)
Ot

where _ is the linear pulsation operator and the operators N2,

N3, etc., are quadratic, cubic, etc., in the displacement vector z.

The AE formalism then provides a sytematic expansion of

Z as

Iz(t)) = [z0(t)) + lzl(t)) + Izz(t)) +'-" (35)

where

[zo(t)) = _ a_,e i_° _[ct) (36)
(3(

and ]zl(t)), Izz(t)), etc., are quadratic, cubic, etc., in the am-

plitudes {a,_(t)}, and thus represent modal interaction terms
("combination frequencies"). The sum is over all dominant

modes c_.

The resonant coupling coefficients, which measure the

strength of the coupling between modes, are given by such inte-

grals as in Eq. 23 and Eq. 26 and are broken up into "direct" and
"indirect" contributions, as indicated by the discussion leading

to Eq. 26.
Theorem: If, genericall3; the direct coupling term is zero

because of parity and angular momentum considerations,

this implies that each of the possible indirect terms is also

zero, and conversely.

Paritu. Consider first the lowest--that is, the cubic coupling
term--for which there is a direct and indirect contribution. The

direct term is of the form

ra_ _ (a]N3[bcd). (S3g) (37)

The expression in parentheses indicates the perturbative origin
of this term; cf. expansions (34) and (35). The parity of the

RHS is II(bcd) = l-I(b)II(c)YI(d), and the parity of the stellar

structure operator is 1-[(N3)= 1. The direct term thus vanishes un-

less 1-[(a) = 1-I(c)l-I(c)H(d). The indirect term (Eq. 26) contains

terms of the form (e.g. BG84, GB94)

rma _ Z (a[N2]bk)(k]Na[cd). (N2ZoZl) (38)
k

For the purpose of clarity we have ignored denominators (sums

and differences of frequencies) and factors of unity. The sum

runs over all eigenstates of the system. This is one of the rea-
sons why it is so difficult to make an ab initio computation
of these terms. It is understood that b, c and d represent both

bcd and their complex conjugates, and that the appropriate per-
mutations of (bcd) are included. The last factor in (38) van-

ishes unless Yl(k) = FI(c)H(d), and the first one vanishes unless

II(a) = YI(b)H(k) = II(b)YI(c)YI(d); i.e., the same condition as

for the direct term.

Consider now the quartic coemcient. The direct term

rd_r :X (alN41bcde) (N4 z4) (39)

vanishes unless YI(a) = YI(b)II(c)YI(d)H(e).
The indirect terms are more complicated now. The), are

given by

rmcl ,x Z (alN3lbck)(k[N3lde) (N3z02zl)
k

+Z (a[Nzlbk) (klN3Icde) - (N2zoz2)
k

+ Z Z (alNzlbk)(k[N2lck')(k'[N2[de).
k k'

(N2zoz2) (40)

It is easy to see again that all three contributions vanish unless

Il(a) = l-l(b)Yl(c)II(d)Fl(e). In fact one sees that each nonvan-

ishing matrix element successively "passes through" the parity
from the left side to the right side. This holds true for all matrix

elements, whatever their order. Since all higher order indirect

terms are built up in a manner similar to Eq. 40 we conclude that

the parity part of the theorem is valid for all orders of coupling.

Angular momentum: The nonvanishing of a given matrix ele-

ment requires that the L_ component on the right match the L=

component on the left; i.e., mjh_ = _ mrhs (because the Nh- all
have m = 0).

Referring to the previous section on parity, mutatis mu-

tandis we see that this sum is passed through the nonvanishing
matrix elements. Each of the indirect contributions therefore

vanishes generically when the direct term vanishes and vice

versa. QED.
The theorem thus implies that if one is interested in deter-

mining which of the normal coupling terms survive in the AEs
it is sufficient to consider the expression of the simple, direct

term.

6. Possible resonances in observed power spectra

In this section we briefly review some examples taken from the
observational literature which, in many cases, strongly suggest

that resonant interactions are indeed present in nonradially pul-

sating stars. For the most compelling examples we also outline

some consequences of the suspected interaction between modes.
For some of our examples we must caution the reader that

the quoted observational results depend on data that may be mis-

leading because of insufficient time coverage of the star being
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discussed.Forthesestars,andothersofcourse,thissectionthen
servestodrawattentionontheonehandtotheneedforandon
theothertothepotentialbenefitsofmoreextensiveobservations
directedtothestudyoftheseresonances.

6.1. Integer resonances: n_,'a _ _b

The ZZ Ceti star GD 385 (Kepler 1984) provides a perfect ex-

ample that can be explained by a 2:1 resonance. The Fourier

spectrum of GD 385 has three well-defined peaks located at
fl _=3.9043, f1+=3.9012 and f2=7.8055 mHz. The observations
show that

f2 = :l- + ft+ (41)

to a relative accuracy of 10 -6. In the following we use the sym-

bol f for observed frequencies which are to be interpreted as

nonlinear frequencies (f = _/(27r)).

Let us assume, as suggested by Kepler (1984), that the two

low-frequency peaks are modes +m belonging to the same mul-

tiplet of given { and radial order. The central component of this

multiplet is frequency locked to f2 to within one part in 10 -6.

The linear eigenfrequencies of the two interacting multiplets
then are in a near 2:1 resonance with _2 _ 2_10 _ _'l- + ,,-q+.

The m = 0 central peak fl0 is not seen, perhaps due to inclina-

tion effects, or due to nonlinear effects: the m = 0 mode indeed

may or may not be involved in the pulsation. Table la shows

that the higher frequency multiplet containing f2 must therefore

be even and probably g2 = 2. (An g of three or higher has never

yet been identified in a variable white dwarf) and rrz2 = 0. The

lower frequency doublet, on the other hand, can be of odd or
even angular momentum and the likely possibilities are gl = I

or 2. In either case, [m i [ must be equal to 1.

One might think that f2 is just a simple harmonic of fl0, with

the f_o peak presumably not observed because the inclination
angle is close to ,'r/2. We believe this to be unlikely because the

harmonics of fl± should then have similar power, but they are
not visible.

One can easily show that it is the phase • = _2 - _1- -

_51+which enters the apposite AEs. If the pulsations correspond

to fixed points of the AEs then, as we have seen in Sect. 2,

this leads to the nonlinear frequency lock of Eq. 41. However,

some amplitude variations have been reported by Kepler (1984)
that occur on the very long time scale of years. Would this be

confirmed, it would imply that it is not a fixed point solution,

but rather a time-dependent one. Such time-dependent behavior,

if generated by the resonance, would of course not vitiate the

angular momentum attributions of the mode.

But because the observed modulation time scale is very long,

the pulsations may still appear to be in a frequency lock when
observed over shorter scales. Indeed, as the AEs show (Sect. 3),

depending on the values of the coefficients, a resonant coupling

can generate modulations of amplitude that are quite different
in size from the period (or phase) modulations. In the present

case, the magnitude of the amplitude modulation would be much

larger than that of the phase modulation.

6.2. Direct resonances: Wa _ _b

During the course of evolution of a star, pulsation frequencies

change and, in some circumstances, the frequency of one mode

may closely approach that of another mode of the same {. In this
case, called avoided crossing, the two linear eigenfrequencies

never become exactly equal to each other. Near the resonance,

the two modes take on a mixed character having some of the

properties of both modes. This avoided crossing, which is a

purely linear effect, is discussed in a stellar context by, for ex-

ample, Unno et al. (1989, Sect. 15.3.1). Nonlinear effects can
however cause the two frequencies to lock, i.e. for the two fre-

quencies to coincide exactly.
Possible examples of direct resonances may be present in

the variable white dwarf PG 1159-035 where only high-order g-

modes of g = !, 2 are observed. With a rich spectrum of modes
(125 were resolved in PG1159 by Winget et al. 1991) there

may be an occasional overlap in frequency between an { = 1
and an £ = 2 in the Fourier spectrum. This is especially true at

low frequencies where, for g-modes, the frequency spectrum

becomes particularly dense. Examples of overlap are reported

in Winget et al. (1991, Table 3) where an g value is assigned as
either g = ! or 2. Reference to our Table 2 shows that a direct

resonance is indeed possible here (with only the rl and re terms
contributing) which may distort what is normally expected to

be seen in the two overlapping multiplets. To disentangle the
effects here is both an observational and theoretical challenge.

Again, depending on the physical situation, and thus on the

values of the coupling coefficients, a direct resonance can lead
to unsteady behavior (amplitude and phase modulations). If

the modulation amplitude is small and sinusoidal, a single pul-

sation then appears in a power spectrum as if it were governed

by three or more closely spaced frequencies.

Finally we note that a direct resonance between a radial and a

nonradial mode has recently been suggested as a possible cause

of the Blazhko effect in RR Lyrae stars (Kov_ics 1994, 1995;

van Hoolst 1995).

6.3. Half-integer resonances: (2n+ 1),_,,__ 2_b

6.3.1. Variable white dwarfs

PG1351 +489

The light curve of the DBV star PG1351+489 described by

Winget et al. (1987) is dominated by a single period of 489.5 s

corresponding to a frequency of f0 _ 2.05 mHz. Strong har-
monics are also seen at 2./'0, 3./'0, etc. Of interest to us, however,

are lower amplitude signals seen in most of the observations

made in the late 1980's at (approximately) 1.47f0, 2.47f0, and

3.47./'0, in order of increasing frequency and decreasing ampli-

tude. Goupil et al. (1988) have claimed that power is also present

in the data at 0.47f0 in two observations reported by Winget et
al. (1987). The situation is murky, however, because red noise

due to low-frequency perturbations in the atmosphere can mimic
or even cancel out the signal we seek. This is especially serious

if, as in the Winget et ai. (1987) observations, data are taken

from a single site with the inevitable one day, or longer, gaps.
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Tocircumventthis, as yet unreported observations utilizing the

"Whole Earth Telescope" (WET) were made in early 1995. (For

a description of WET see Nather eta!. 1990.) With the extended

global coverage capabilities and improved resolution of WET,

a signal at 0.46f0 is seen very clearly as are ones at 1.46fo,
etc. The amplitude of the peak at 0.46f0 is only 4% of f0 itself,

which illustrates the virtue of extended coverage in resolving

peaks of low amplitude. Although the 1995 data have not yet

been completely reduced and analyzed, the peak at .to shows

evidence for splitting (or unsteadiness) whereas, to the limits of
the observations, neither 1.46f0 nor 2.46f0 seem to have multi-

plet structure. (There are other low amplitude signals in the data

but they appear to be independent modes not directly associated
in a resonant fashion with the main peaks.)

It seems reasonable to interpret the Fourier spectrum as

generated two modes, at f0 and at fj = 1.46fo (or perhaps
fl = 2.46f0). All other peaks would then be harmonics of f0

and combination peaks of f0 and fl.

There is no absolutely compelling reason why these could

not be two independent, nonresonant modes. It is difficult to

understand though why there would be just two excited modes,

with a rather tight frequency ratio of 1.46. A coincidence seems

unlikely because there are two additional white dwarfs known
with a similar Fourier spectrum and a frequency ratios of 1.52

and 1.54, respectively (see below). However, the observed be-

havior appears quite natural if we assume that a half integer
resonance is active in this star (3:2, or perhaps 5:2).

It might be objected that the observed intermediate frequen-
cies do not appear at 1.5 (or 2.5), but that they always fall short

of those values. In a resonance situation one would expect non-
linear effects to lead to either of two situations, viz. either exact

frequency-lock, or fluctuations about the resonance condition
i.e. in both directions. The spectrum of PGI351 can however be

explained if the observed second frequency (fl =1.46 or 2.46

f0) is one of the ra 5t 0 components of the multiplet, and is the

only one that is large enough to be observed. The work of BGS
has shown that large amplitude asymmetries within a given mul-

tiplet can easily happen. In the present case, this would yield a

rotational splitting 4- ,_ 60 - 80 pHz of the 1.5f0 peak. This
indicates a rotation that is probably too fast if the fl peak cor-

responds to the rn = 1 component (part of the split could be

explained by nonlinear effects). The size of the split therefore

favors again an g = 2, m = 2 (or higher g, m) component. In
either case, if we are dealing strictly with nonradial modes of

low order -- and the observed periods do rule out/7 = 0 modes

- then Table 3 suggests that the mode at f0 is an g = 2 mode.

(Note that/7 > 3 modes have not yet been identified in white

dwarf light curves.)

With either of the two resonant possibilities mentioned
above, Table 3 restricts the mode at f0 to be an/7 = 2 mode.

(The observed periods definitely rule out/7 = 0). The discussion

surrounding Table 3 also states that a 3:2 or 5:2 resonance can

couple only m = 0 modes of a possible multiplet.

If f0, with the aid of future observations, turns out to have
g = 2 then that would be a strong argument for our resonant

identification.

GD154

Another curious example is the DA variable white dwarf

GD 154 first reported on by Robinson et al. (1978). This 1978 pa-

per describes a star that was a virtual twin of PGI351 discussed
above except that the ratio of near 3:2 (or 5:2) was 1.52f0, etc.,
rather than (in the latest observations) 1.46f0, etc. With this

information alone, we would assign ( = 2 to the mode at f0

(where, in this case, fo = 0.842 mHz).
If, however, we only had the more recent WET observations

of Pfeiffer et al. (1993) we would tell a different story: they

observe I_o half-integer signals at all and we would have no

reason to assign/7 = 2 to fo. The true story, we believe, is that

the assignment/7 = 2 may still be valid but -- and being true to

the whole story we tell here -- nonlinear effects of the 3:2 (or
5:2) resonance force the half-integer mode to essentially appear

and disappear on time-scales that are as yet unknown. Pfeiffer

et al. may just have caught the star at an inopportune time.
BPM31594

This is a white dwarf to have been observed with simi-

lar Fourier spectral features (O'Donoghue, Warner & Cropper,
1992). Here the second frequency appears at 1.54f0, and har-

monics at 2.54, 3.54.

6.3.2.6 Scuti stars

Another potential candidate for a 3:2 resonance is afforded by
the _ Sct star DL Eri (HR 1225) reported on by Poretti (1989).

The Fourier spectrum seems to be dominated by three fre-

quencies, fl =6.41, f2_=8.98 and f2+=10.26 c/d. One notes that
3fl = f2- + f2+ to within the claimed accuracy of the frequen-

cies; in other words, the low frequency is in exact resonance

with the center of the high frequency doublet. Table 3 indicates

that the low frequency mode must have even/7 (and could also be
radial); there are no g constraints on the high frequency mode.
It remains to see whether these conclusions would survive an

increase in resolution and signal-to-noise ratio as provided by a

muhisite observation campaign.

6.4. 1:1:1 resonance: rotational splitting

6.4.1. The ZZ Ceti star G226-29

This star is observed to have a Fourier spectrum composed of

a triplet of modes which is split almost exactly evenly in fre-

quency (Kepler, Robinson & Nather 1983). No amplitude vari-
ations are mentioned. More recent observations using WET by

Kepler et al. (1995) provide updated information. The main peak

appears at P = 2rr/_ = 109.3s and has an average splitting of
16. !5pHz. It appears that the frequencies in the triplet have re-

mained constant to within about one part in 10 4 (as the limit

of their measurements) and there is only marginal evidence that

one of the amplitudes has changed by perhaps 20%. From these
considerations it seems that the theoretical connection of am-

plitude constancy and frequency locking is indeed verified for
this star.

Since white dwarfs are slow rotators and since the linear

deviation from equidistance is second order in the rotation fre-
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quency(Eq.17andfollowingparagraph)nonlineareffectsneed
notbestrongtobringaboutfrequencylocking.Thus,inthiscase,
thesplittinggivesagoodestimateoftherotationfrequency(Ke-
pleretal.1995),fromwhichweinfer6.3/w_ 1.2x 10-5.The
approximateconditionforfrequencylocking(Eq.17)requires
agrowthratetofrequencyration/aJ of the order or larger than

10 -5 - 10 -6. This figure is consistent with what is currently

obtained for low overtone g - modes of DAV models (Bradley
1994).

6.4.2. DOV White dwarfs

Two additional variable white dwarfs are of interest for this dis-

cussion and these point to the need for more detailed studies

of 1:1:1 resonances. These stars are PG1159-035 (Winger et al.

1991 ) and PG2131 +066 (Kawaler et al. 1995), which have been

studied extensively with WET. They are similar with respect

to luminosity and effective temperature (luminous and hot) and

both show conclusive evidence for a large number of _ = I
nonradial triplet modes. In PG1159 the triplet of highest am-

plitude has undergone a modulation in amplitude (of unknown

time scale) among members of the triplet, while some triplets

in PG2131 have shown curious changes in relative frequencies

within a triplet. In PG2131 the low frequency peaks appear

sharp, whereas the central and especially the high frequency

peaks show a broader structure. The observed broadening of
the lines in the Fourier spectrum could be caused by amplitude

modulations which can have different depths for the sub-peaks

of a given multiplet (BGS).

The Fourier spectra of PG 1159 and PG2131 are dominated

by just a few modes, but without any apparent resonances. All

the other peaks have much lower power. According to Kawaler
et al. (1995) these low-amplitude modes are observed to come

and go on time scales of months to years. This is the kind of

time scale for amplitude modulations that one may expect on

the basis of linear growth rates in many circumstances (Lee &

Bradley 1993). Could these low-amplitude intermittent modes
be stochastically excited by, for example, turbulence associated
with convection?

We mention the following as a possible scenario for the

observed spectra. One or a few modes (multiplets) are linearly

unstable and grow to saturation amplitudes given by

A 2 _ (_ + x,/_ 2 - 4q,9"- ) _ - (42)
q

where _¢and q are a typical growth rate and cubic saturation

coefficient (see, e.g. Buchler, Goupil & Kovdcs 1993). S/- is

the noise intensity that drives the mode and has its origin in

the convective and turbulent motions. The intra-multiplet am-

plitudes primarily owe their variations to nonlinear effects that
are inherent in the 1:1 :1 resonance (BGS) of the muitiplet with
itself.

The modes on either side are increasingly stable (_ < 0). If

they are stable but stochastically excited, their amplitudes are

given by A 2 _ 5//[_[. (This is the usual linear result valid

when q.9"/_ 2 << 1). Thus assuming that the noise intensity is

more or less the same for neighboring multiplets, one expects

the amplitudes to taper offgradually on either side of the linearly

unstable modes. It was shown theoretically (cf. Fig. 1 of BGK)

that the amplitude fluctuations are largest for modes near n = 0.
If the above picture is correct then one expects the modes of

lower amplitudes to undergo larger amplitude fluctuations than

the dominant modes of large amplitude, with a concomitant

correlation with broad and narrow peaks in a Fourier spectrum,
features which are amenable to observational verification.

Superposed on this scenario would be the effects of trapping

on the modes. Indeed one expects the growth rates to "oscillate"
as a function of modal overtone. Thus there could be one or more

further enhancements of the amplitudes on one or both sides of

the dominant peaks. The spectrum of the DB variable white

dwarf GD358 (Winger et al. 1994) shows amplitude variations

between successive modes that might be an expression of this
scenario.

6.4.3. 6 Scuti stars

The observed frequencies fl = 7.217139, f, = 7.346146, f3 =
7.455268 c/d of the _5Scuti star 1 Mon are locked, i.e fl + f3 =

2f.,, to a relative accuracy of 10 -5. The frequencies fl and f3

have been identified as the m = -1 and m = +1 components

of a _' = 1 triplet split by rotation. The rotation rate is then

f_ = 0.131 revolution per day (Balona and Stobie, 1980). That

f2 is a radial mode as it has been identified or the centroid mode
of the l = 1 triplet is still questioned (Balona and StoNe, 1980;

Breger, 1992).

Whether the observed frequency-lock is in agreement with

Eq. 17 depends on the eigenfrequencies andon the growth rates

of the modes. If f2 is the frequency of the m = 0 component of

the triplet, the frequency lock ought to exist for a large enough
growth rate i.e. K/,_ > (f't/a02 _ 3.210 -4 (,3 .._ 0.5(ft +

f3)), again within a factor 10 due to the involved, but discarded

linear and nonlinear coefficients. This is the order of magnitude

expected for the strongest linearly excited modes of _ Scuti

stars. This would explain why the triplet appears equally spaced

when a linear framework predicts, with the above rotation rate,

a significant departure from equidistance.

On the other hand, the selection rules show that a locked

radial mode, associated with f2, is also possible. Of course, this

requires that the g = 0 and the (unseen) m = 0, ,e = 1 modes

are close enough for the resonance to be effective in locking the

frequencies, a closeness that is encountered relatively often in

models of c5Scuti stars. On a practical side, this second possi-

bility shows that an observed multiplet of locked frequencies

is not necessarily associated with modes of same degree ( but
may well correspond to modes of different degrees.

7. Conclusion

We have discussed the constraints imposed by resonances and
have considered the observational material to determine where

such resonances may play a role, and where new information
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maybegainedfromapplyingtheamplitudeequationformalism
tononradiallypulsatingstars.

Wehaveassumedthatindividualorperhapstwoor three
multipletscanbestudiedinisolationfromotherobservedmul-
tiplets.Wewouldliketopointoutthatthisassumptionmaybe
evenbetterjustifiedwhentheadditionalobservedmultiplets,
ratherthanbeingexcitedbecauseof positivedriving(bythe
K-mechanism,forexample),aremerelystochasticallyexcited.

Withtheseassumptionswehaveshownthatit ispossibleto
putspecificconstraintsonthenatureof theinteractingmodes
inacoupleofvariablewhitedwarfs.

Wehavediscussedinsomedetailtherelationbetweenthe
frequencylocksthatcanbeintroducedbyresonances,andthe
constancyoftheassociatedmodalamplitudes.Converselywe
havealsodiscussedtheamplitudeandfrequencymodulations
thatcanappearbeyondtheimmediatevicinityoftheresonances.

In thecaseof a2:1resonancewehaveshownontheba-
sisof anumericalexamplethefollowingscenario.Whenthe
starevolvestowardaresonanceconditionit firstundergoespul-
sationswithrapid,butsmallamplitudeandfrequencymod-
ulations.Thesemodulationsincreasein sizeanddecreasein
frequencyastheresonanceis approached.In thevicinityof
theresonancethestarsuddenlyjumpsintoconstantfrequency
lockedpulsations..

Forrotationallysplitmultipletsthepresenceoffrequency
lockdependsontheratioof (f_/,,j)2beingsmall(inorderof
magnitude)comparedto_/w(Eqs.16and17).Whenf_issuf-
ficientlylargeorKissufficientlysmalloneobtainsamplitude
andfrequencymodulatedpulsations.

Thegeneralquestionof 'modeselection'alsoariseswhen
therearepossibleseveralcoexistingbutmutuallyexclusivesta-
blepulsationalstates.Whichonedoesthestarchoosetopul-
satein?In general,asevolutionproceeds,thechoiceof pul-
sationalstateisunique.Thesimplestexampleisgivenbythe
nonresonantinteractionoftwomodes( cf.Buchler& Kov_ics
1986).Attheinstabilityblueedgethestarstartstopulsateinthe
modewhichhasjustbecomelinearlyunstable(moreprecisely
bymodewemeanthenonlinearmodewhichisanoutgrowth
oftheunstablelinearmode).Itwill thenstayinthismodeuntil
thismodeitselfbecomesunstableorbifurcatesintoanotherone.
Therecanbehysteresis.Duringtherightwardevolutioninthe
HRdiagramthepulsationalstatemaydifferfromtheonealeft-
wardevolutionwouldgive.Forcompletenesswerecallthatthe
coexistingstablepulsationalstateswhichcanonlybereached
throughafiniteperturbationawayfromastablepulsationalstate
inwhichthesystemfindsitself.Whetherintrinsicturbulentor
convectivefluctuationscouldbelargeenoughtoeffectsucha
"hard"bifurcationisunknown.

Thenonlinearasteroseismologythatwehavediscussedhere
isstillin itsinfancy.Wehaveshownhowresonancescanbe
usedto helpin theidentificationof modes.A fewinteresting
resultscanbeobtainedfromaphenomenologicalconfrontation
betweenthepredictionsofAEsandtheobservations.Themajor
quantitativeprogressthatweforesee,though,will comewith
theweddingof ab initio computations of the coupling coef-

ficients to more comprehensive observations. With respect to
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the latter, great strides have been made with multi-site obser-
vations (WET, STEPHI, etc.). These collaborative efforts have

been mostly geared toward linear asteroseismology and it would

be very useful if they could be more attuned to specifically non-

linear considerations; in particular concentrate on those white

dwarfs that have simple spectra, with ostensive resonances, both

those with apparently constant amplitudes and those with mod-
ulations.
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